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Purpose: Anode heel effect renders large-scale background nonuniformities in digital radiographs.
Conventional offset/gain calibration is performed at mono source-to-image distance (SID), and disre-
gards the SID-dependent characteristic of heel effect. It results in a residual nonuniform background
in the corrected radiographs when the SID settings for calibration and correction differ. In this work,
the authors develop a robust and efficient computational method for digital x-ray detector gain correc-
tion adapted to SID-variant heel effect, without resorting to physical filters, phantoms, complicated
heel effect models, or multiple-SID calibration and interpolation.
Methods: The authors present the Duo-SID projection correction method. In our approach, conven-
tional offset/gain calibrations are performed only twice, at the minimum and maximum SIDs of the
system in typical clinical use. A fast iterative separation algorithm is devised to extract the detector
gain and basis heel patterns from the min/max SID calibrations. The resultant detector gain is inde-
pendent of SID, while the basis heel patterns are parameterized by the min- and max-SID. The heel
pattern at any SID is obtained from the min-SID basis heel pattern via projection imaging principles.
The system gain desired at a specific acquisition SID is then constructed using the projected heel
pattern and detector gain map.
Results: The method was evaluated for flat field and anatomical phantom image correc-
tions. It demonstrated promising improvements over interpolation and conventional gain calibra-
tion/correction methods, lowering their correction errors by approximately 70% and 80%, respec-
tively. The separation algorithm was able to extract the detector gain and heel patterns with less than
2% error, and the Duo-SID corrected images showed perceptually appealing uniform background
across the detector.
Conclusions: The Duo-SID correction method has substantially improved on conventional off-
set/gain corrections for digital x-ray imaging in an SID-variant environment. The technique is
relatively simple, and can be easily incorporated into multiple-point gain calibration/correction
techniques. It offers a potentially valuable tool for preprocessing digital x-ray images to boost
image quality of mammography, chest and cardiac radiography, as well as automated com-
puter aided diagnostic radiology. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4813303]

Key words: anode heel effect, digital x-ray detector, gain calibration, nonuniformity, source-to-image
distance

1. INTRODUCTION

Digital flat panel technology has been extensively used in
medical x-ray imaging such as chest radiography, digital sub-
traction angiography, cardiology and mammography. Com-
pared to conventional image intensifier-based x-ray systems,
flat panel-based systems offer a larger field of view, extended
dynamic range, and pleasant patient accessibility. However,
due to panel design and manufacture limitations, the detec-
tor pixel matrix is not spatially uniform. Moreover, the anode
heel effect causes variations in the x-ray beam intensity across
the detector surface. The combination of the large-scale heel
variation and localized gain variability of the detector con-
tributes to the complex spatial nonuniformities in digital ra-
diographs. In clinical imaging applications, they appear as ar-
tifacts that interfere with correct diagnosis and assessment of

diseases. Therefore, each pixel of the detector matrix must be
corrected using flat field calibration techniques.1, 2

We give an overview of conventional flat field correc-
tion techniques for panel detector nonuniformity and relevant
work on heel effect correction. To highlight the problem, we
focus on a widely used gain calibration method called off-
set/gain calibration and a model based heel effect suppression
in anatomical images.

The observed x-ray signal acquired using an x-ray elec-
tronic panel detector is given by

I (i, j ) = G(i, j ) · Ic(i, j ) + N (i, j ), i, j ∈ �, (1)

where I(i, j) is the raw image density at pixel position (i, j).
G(i, j) is the system gain relative variation (or simply, system
gain) encoding the stationary, nonuniform exposure response
of the detector at pixel (i, j). Ic(i, j) is the underlying correct
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image. N(i, j) denotes the dark current noise in the detector at
acquisition. � is the discrete domain of image pixel positions.

The offset/gain calibration estimates G(i, j) and the ex-
pected value of N(i, j), then uses them to correct any raw im-
age I(i, j), yielding an estimation of Ic(i, j) as follows:

Îc(i, j ) = I (i, j ) − D̄(i, j )

Ĝ(i, j )
, (2)

where

Ĝ(i, j ) = F̄ (i, j ) − D̄(i, j )

〈F̄ (i, j )〉� − 〈D̄(i, j )〉�
. (3)

F̄ (i, j ) and D̄(i, j ) are the means of P flat field images
{Fk(i, j)}k = 1, 2, . . . , P with the same exposure and Q dark cur-
rent images {Dl(i, j)}l = 1, 2, . . . , Q, respectively. 〈·〉� denotes
the pixel average over the active region � of the detector.
D̄(i, j ) is the offset that approximates the expectation of
N(i, j). Ĝ(i, j ) is an approximation of G(i, j) that contains ran-
dom noise and measurement errors. If P and Q are sufficient
large, Ĝ(i, j ) → G(i, j ).

The conventional method for flat field calibration is per-
formed at a fixed SID, usually the middle of the SID range in
a clinical setting. The resulting gain factor is then applied to
correct images acquired across a range of SIDs. The problem
with this is that the heel effect and beam geometrical effects
are SID-dependent. The more an acquisition SID differs from
the calibration SID, the higher the residual field inhomogene-
ity in the corrected image. To alleviate this problem, it seems
possible to use an empirical method, that is to calibrate the
system at multiple SIDs with sufficiently small spacing, cal-
culate an SID-dependent gain correction factor Ĝ(i, j ; d) via
linear interpolation, and apply Ĝ(i, j ; d) to the images to be
corrected. However, the digital receptors may also show non-
linear exposure response characteristics that require multiple-
dose (or multiple-point) gain calibration.2, 3 An extended
receptor calibration with multiple-dose (usually a dozen)
and multiple-SID (half a dozen) would heavily burden the
calibrators.

The flat field offset/gain calibration can be traced back
to the era of film radiography. In Refs. 4 and 5, a digitized
image of a “blank” film was used to correct field nonuni-
formity in mammograms. A computational method based on
heel effect modeling and image partitioning was proposed in
Ref. 6. Direct exposure areas in an uncorrected image were
segmented out. The heel effect model fitting to the directly
exposed data was determined by regression analysis. The fit-
ting model was then used to correct the images. However,
the model assumed a mono-energetic radiation source and
ignored the beam hardening effects. Being a 1D model, it
merely considered the cathode-anode directional field varia-
tions. Moreover, the method demanded that the direct expo-
sure regions to be sufficiently large and distributed across the
image domain for reliable estimation of the model parameters.
The method was tested in correcting images of extremity ex-
aminations, but had limited applications in chest radiographs
since they rarely contain direct radiation regions. This heel ef-
fect model6 was generalized to a 2D model with a continuous
spectral beam taken into account.7 The structural and material

information about the anode were regarded as known param-
eters and used in the model formula to generate a simulated
heel pattern. The simulated heel pattern was then registered
to the uncorrected images to correct the field nonuniformity.
This analytical model was still oversimplified, lacked suffi-
cient accuracy and detailed information regarding x-ray tube
design and manufacturing. Furthermore, it did not address
how image registration based on empirical heel distributions
could be utilized in general radiography.

The physical beam filter was introduced to compensate for
the heel effect in mammograms.8 Each x-ray tube needed a
specifically designed filter that was coupled to the x-ray tube
window in use. Later in Ref. 9, a bowl phantom calibration ap-
proach was developed for correcting digitized mammograms.
During calibration the phantom was placed closely under the
x-ray tube. A correction matrix was obtained from the phan-
tom images. The matrix was then applied to correct field in-
homogeneity in mammogram during image acquisition. The
beam path obliquity effects within the soft tissue were cor-
rected computationally. Neither technique is truly effective
in correcting localized, correlated noises resulting from x-ray
receptors in digital imaging systems. Aside from mammog-
raphy, many examinations in general radiography use much
wider ranges of tube kVp and SID settings as well as a much
larger field of view, causing highly versatile heel effects. This
makes it necessary to employ many specifically designed
Perspex filters or phantoms based on the examination type.
Therefore, the beam filtering and phantom calibration tech-
niques seem inadequate and impractical for nonhomogeneity
correction in digital radiography.

The residual inhomogeneity exists in the corrected digital
radiographs caused by SID mismatch during calibration and
correction. It may hinder correct attenuation measurements
of tissue from the imaged anatomy. In this work, we present a
Duo-SID projection model which improves on the mono-SID
scheme. With minimal additional effort, the proposed Duo-
SID correction technique promises to overcome the excessive
calibration burden and other limitations associated with
empirical multi-SID-interpolation correction. The paper is or-
ganized as follows. In Sec. 2, we describe the method for sep-
arating detector gain and basis heel effect, introduce the pro-
jection model, and derive a relationship between the spatially
discretized heel effects at different SIDs. In Sec. 3, we test and
validate the method using real and simulated data and a com-
mercial panel. Potential issues in application of the method
are discussed in Sec. 4, and conclusions are drawn in Sec. 5.

2. MODELS AND METHODS

2.A. System nonuniformity model

The radiographic imaging system setup and coordinates
are illustrated in Fig. 1. The beam axis is assumed to be nor-
mal to the detector surface. The xy-plane lies on the surface of
the detector with the origin at the projection of the focal spot
on the detector surface. The x-axis is the anode–cathode axis.
The z-axis is along the beam axis pointing to the detector. The
anode patch being bombarded by electrons is inclined by a
small angle (termed anode angle) θ (7◦ ≤ θ ≤ 15◦) relative to
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FIG. 1. X-ray imaging geometry and anode structure.

the z-axis. Its normal is parallel to the x-axis, with an average
beam penetration depth in the anode da. The tangent plane of
the focal spot is parallel to the y-axis.

The basic projection imaging equation is

I (x, y, d) =
∫ Emax

0
S0(E′)E′

× exp

{
−

∫ r(x,y)

0
μ(s; E′, x, y) ds

}
dE′. (4)

S0(E) is the photon fluence spectrum composed of the
Bremsstrahlung spectrum and characteristic lines emitted by
the anode target. E is the photon energy and Emax is the cut-
off photon energy. r(x, y) is the path of a ray. μ(s; E, x, y) is
the linear attenuation coefficient along the ray path. Taking
into account the beam divergence and obliquity, we obtain the
point-source beam incident fluence on the detector surface

I (x, y; d)

= 1

4πd2
cos3 ϕ

∫ Emax

0
S0(E′)E′

× exp

{
−μT (E′)da

√
1 + (x/d)2

tan θ + x/d
− μC(E′)L

cos ϕ

}
dE′,

(5)

where ϕ is the angle between the beam axis z and a ray that
hits the detector surface at point (x, y). The cos 3ϕ term gov-
erns the x-ray beam divergence effects according to the in-
verse square law and obliquity.10 μT and μC are the linear
attenuation coefficients of the target and aluminum, respec-
tively. L is the thickness of the aluminum (Al) equivalent filter
composing the x-ray tube window and the added calibration
filter. From Eq. (5), by way of ray tracing, the far-field ra-
diation fields at two distinct distances d and d′ (d′ > d and
d 	 distance of added filter to source) satisfy the projection
relationship

I (x, y; d ′) = 1

m2
I

( x

m
,

y

m
, d

)
, (6)

where m = d′/d is the magnification factor.
Raw digital radiographic images suffer from high-

frequency, correlated artifacts caused by nonuniform response

characteristics across the detector pixel matrix, and low fre-
quency background artifacts resulted from the x-ray beam
nonuniformity. The two deterministic artifacts are jointly
modeled by the system gain G(i, j; d), which can be expressed
as a product of the two factors

G(i, j ; d) = g0(i, j ) · g̃(i, j ; d), (7)

where g0(i, j) is the detector nonuniformity gain factor, inde-
pendent of SID, and g̃(i, j ; d) is the sampled beam nonuni-
formity at pixel site (i, j). In conventional correction methods,
g̃(i, j ; d) is regarded as independent of d and thus absorbed
into the detector gain.

The presampled field nonuniformity g(x, y; d) is caused
by the inhomogeneous incident fluence I(x, y; d) in Eq. (5),
normalized to unity,

g(x, y; d) = I (x, y; d)

〈I (x, y; d)〉S , (8)

where S is the continuous domain corresponding to the ac-
tive region of the detector in (x, y) coordinates. The sampled
beam pattern is the detector pixel sampling of the presampled
pattern

g̃(i, j ; d) = g(x, y; d) ∗ s(x − xi, y − yj ),

xi = −cx + ih,

yj = −cy + jh. (9.1)

s(x, y) = 1
h2 rect ( x

h
) rect ( y

h
) is the detector pixel averaging

filter. h is the pixel spacing. (cx, cy) are the coordinates of
the beam center (or focal spot projection position) in the im-
age plane with respect to the detector reference frame where
the origin is the upper left corner of the receptor. Since the
beam field inhomogeneity is slowly varying relative to h,
we approximate s(x, y) with an impulse function δ(x, y).
Equation (9.1) becomes

g̃(i, j ; d) ≈ g(xi, yi ; d). (9.2)

Figure 2 shows the typical contour plots of g(x, y; d) at
SID = (43, 53, 63 in.). These values were taken to match
those for the experiments in Sec. 3. They reflect approxi-
mately the typical settings in clinical projection imaging. In
clinics, the SID is commonly set between 39 and 72 in. For
portable exams, the SID of less than 39 in. is also used, but
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FIG. 2. Beam nonuniformity shown as contours of equal values at SID = (43, 53, 63 in.) from left to right. The system modeling parameter setup is described
in Sec. 3.B. The coordinate origin is at the bottom left corner for these plots.

nowhere near the frequency of SID greater than 39. We ob-
serve that the variations in g(x, y; d) are more pronounced
at smaller d. From Fig. 2 or Eq. (5), it is expected that the
heel effect will be flattened as d gets larger (relative to the
dimension of the detector), and eventually g(x, y; d) ≈ 1. If
the gain calibration performed at SID = d is applied to an
uncorrected image acquired at a SID = d′, the corrected im-
age will retain inevitably a residual nonuniformity that equals
the ratio g̃(i, j ; d)/g̃(i, j ; d ′). See Fig. 4 for an example and
Appendix A for derivation.

2.B. Duo-SID projection model

We derive a model for projecting the basis beam pattern
on the minimum SID plane to a higher SID setting. Then a
method is devised for extracting the detector gain and basis
beam pattern from gain calibrations at min/max SID settings.
The system gain at any given SID setting can be constructed
via projection and recombination.

2.B.1. Projection of basis beam model

The forward projection of the basis beam pattern
g(x, y; dmin) onto a farther plane at d can be derived from
Eqs. (6) and (8),

g(x, y; d) = g
(

x
m

,
y

m
; dmin

)
〈
g

(
x
m

,
y

m
; dmin

)〉
S

, ∀(x, y) ∈ S, (10)

where m = d/dmin is the projection magnification factor. This
relationship relates the beam nonuniformities on two different
planes normal to the beam central axis. The right hand side of
Eq. (10) is interpreted as a magnified version of g(x, y; dmin)
cropped to fit the domain S, and then renormalized to unity
over S. In the digital domain, the projection relation becomes

g̃(i, j ; d) = g
(

xi

m
,

yj

m
; dmin

)
〈
g

(
xi

m
,

yj

m
; dmin

)〉
�

. (11)

g( xi

m
,

yj

m
; dmin) is the reconstructed, magnified beam pattern

g
( x

m
,

y

m
; dmin

)
=

∑
(i,j )∈�

g̃(i, j ; dmin) sinc

( x
m

− xi

h

)

× sinc

( y

m
− yj

h

)
. (12)

The derivation is provided in Appendix B. For convenience,
we adopt a projection operator for the relevant computing
process,

g̃(i, j ; d) = P
{
g̃(:, :, dmin); h, (cx, cy), (i, j ), (dmin, d)

}
.

(13)

P{ · } implements a series of processing: (1) reconstruct the
presampled beam pattern from the sampled array g̃(:, :, dmin)
in the beam center coordinate system, (2) magnify the recon-
struction by a factor m = d/dmin, (3) sample at the position
corresponding to the detector pixel site (i, j), and (4) normal-
ize over domain �.

2.B.2. Extraction of basis beam pattern
and detector gain

Combining the min/max SID calibrated gains [obtained
from Eq. (3)] and Eq. (7), we obtain two approximate
equations

Ĝ(i, j ; dmin) ≈ g0(i, j ) · g̃(i, j ; dmin), (14.1)

Ĝ(i, j ; dmax) ≈ g0(i, j ) · g̃(i, j ; dmax). (14.2)

The approximation is caused by using finite number of
flat field images to estimate G(i, j; d). To solve for
g0(i, j ), g̃(i, j ; dmin) and g̃(i, j ; dmax), another independent
equation is needed. From Eq. (11), the projection relation
gives

g̃(i, j ; dmax) = g
(

xi

M
,

yj

M
; dmin

)
〈
g

(
xi

M
,

yj

M
; dmin

)〉
�

, (14.3)

where M = dmax/dmin. We seek an iterative solution of prob-
lem (14.1–3). Since the basis beam pattern g̃(i, j ; dmax)
varies more slowly than g̃(i, j ; dmin), we set an initial guess
g̃(0)(i, j ; dmax) = 1. At the kth step, the detector gain and
beam patterns at min/max SID are computed as follows:

g
(k)
0 (i, j ) = Ĝ(i, j ; dmax)

g̃(k)(i, j ; dmax)
, (15.1)

g̃(k)(i, j ; dmin) = Ĝ(i, j ; dmin)

g
(k)
0 (i, j )

∗ hσ (i, j ), (15.2)

g̃(k+1)(i, j ; dmax) = P {g̃(k)(:, :, dmin); h, (cx, cy), (i, j ),

× (dmin, dmax)}. (15.3)
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hσ (i, j) is a discrete 2D Gaussian filter with standard deviation
σ and ∗ denotes convolution. This low-pass filter is applied to
prevent the random noise in the calibrated Ĝ(i, j ; dmin) and
Ĝ(i, j ; dmax) from propagation and being amplified through
the iterative projection.

2.B.3. System gain at any SID

With the estimates of detector gain ĝ0(i, j ) and beam
nonuniformity ˆ̃g(i, j ; dmin), we can construct the system gain
at any SID setting within the range [dmin, dmax],

Ĝ(i, j ; d) = ĝ0(i, j )
ĝ

(
xi

m
,

yj

m
; dmin

)
〈
ĝ

(
xi

m
,

yj

m
; dmin

)〉
�

. (16)

Finally, the raw image I(x, y) acquired at any SID can be cor-
rected using Eq. (2).

2.C. Algorithm summary

The two core algorithms for implementing our method, the
Duo-SID projection correction, are summarized as follows.

2.C.1. Separation algorithm

[g̃(:, :, dmin), g̃(:, :, dmax), g0(:, :)] ← separator{Ĝ(:, :, dmin), Ĝ(:, :, dmax),
dmin, dmax}

Initialize: k ← 0, g̃(0)(dmax) ← 1
Do

Compute g̃(dmin):

g
(k)
0 ← Ĝ(dmax)

g̃(k)(dmax)

(Optionally, detect and correct defective pixels in g
(k)
0 )

g̃(k)(dmin) ← Ĝ(dmin)

g
(k)
0

g̃(k)(dmin) ← imfilter
{
g̃(k)(dmin)

}
Update g̃(dmax):

g̃(k+1)(dmax) ← projector
{
g̃(k)(dmin); h, (cx, cy ), (i, j ), (dmin, dmax )

}
k ← k + 1

while ‖ g̃(k+1)(dmax) − g̃(k)(dmax) ‖> ε or k < maxiter

The optional step deals with possible defective pixels that
could lead to division by zero.

2.C.2. Projection algorithm

g̃(:, :, d) ← projector
{
g̃(:, :, dmin); h, (cx, cy ), (:, :), (dmin, d)

}
m ← d

dmin

g̃ ← imresize{g̃(dmin), m}
b ← (m − 1) × (cx, cy)

b̄ ← round
(

b
h

)
g̃ ← imcrop{g̃, [b̄, imsize{detector}]}
g̃(d) ← g̃

median{g̃}

FIG. 3. Beam-imager geometry for calibration.

Imresize{A, m} returns an image that is m times of the
size of A. Imcrop{B, rect} returns a portion of B in the re-
gion rect. Round(x) rounds the number x to the nearest in-
teger. [b̄, imsize] specifies a rectangle region within the de-
tector matrix. b̄ is the vector representation of the row and
column indices of the upper left corner of the region occu-
pied by the detector. The geometrical relation is illustrated in
Appendix C.

3. EXPERIMENTS AND RESULTS

3.A. System setup and general test

The beam geometry and experiment setup for calibration
and correction are illustrated in Fig. 3. The imaging system
used a Sedecal SHF-65 generator with a Varian G292 tube and
a Varian 4343 CB dynamic panel. For all data acquisition the
x-ray tube peak kilo-voltage was fixed at 72 kV. The added fil-
ter with 0.5 mm Cu plus 2 mm aluminum was used to harden
the beam to RQA-5 quality. The half value layer (HVL) of
6.8 mm Al was measured. The beam was collimated with
about 1 in. margin. Table I lists the exposure settings used
to acquire flat field images for calibration, flat field, and hand
phantom images for correction. F1−10 stands for flat field im-
ages numbered 1 to 10. Ten dark current images were ac-
quired prior to exposure data acquisitions. The offset was
computed as frame average of the ten dark current images.
The receptor is in 2 × 2 binning mode, and the image pixel
dimensions are 1488 × 1488, with a bit-depth of 16. The
2 × 2 binned pixel pitch is 0.278 mm.

Ĝ(:, :, 43′′) and Ĝ(:, :, 63′′) were calculated using the ten
flat field images exposed at 4 mAs with 43′′ SID and 8 mAs
with 63′′ SID, respectively, shown in Fig. 4. Notice the gain
nonuniformities and heel effect. These two system gains were
input to the Duo-SID correction. The geometrical parameters

TABLE I. Flat field (F) and hand phantom (H) images acquired at the same
kVp = 72 kV.

SID Calibration Correction

43′′ 4 mAs F1−10 Min-SID calibration
53′′ 8 mAs F1−10 Ground truth 4 mAs F1−5 and H1−5

63′′ 8 mAs F1−10 Max-SID calibration

Medical Physics, Vol. 40, No. 8, August 2013
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FIG. 4. Left and middle: Min/max SID system gains from conventional offset/gain calibration at SID = 43′ ′ and 63′ ′. Right: Residual nonuniformity resulted
from applying gain calibrated at dmax to correction at dmin. Variations of greater than 20% were observed.

are known a priori: dmin = 43′′, dmax = 63′′, h = 0.278 mm,
(cx, cy) = (245.94, 210.51) mm. The algorithmic parameters
are set empirically: σ = 60, ε = 1.5, maxiter = 10. The ex-
tracted beam patterns and detector gain are shown in Fig. 5.
The algorithm converged in six iterations.

We performed three evaluations to assess the Duo-SID
algorithm against the linear interpolation, the conventional
(mono-SID) method, and the exact calibration calculated as
the ground truth gain.

3.A.1. Gain evaluation

The ground truth gain Ĝ(53′′; exact) was obtained using
the ten flat field images exposed at 8 mAs with 53′′ SID.
We computed Ĝ(53′′; Duo-SID) using Eq. (16) with the ex-
tracted detector gain and beam pattern at min-SID. The linear
interpolated gain is Ĝ(53′′; interpolation) = 1

2 [Ĝ(43′′; exact)
+ Ĝ(63′′; exact)], and the conventional or mono-SID gain is
Ĝ(53′′; conventional) = Ĝ(63′′; exact).

We use the root mean square error (RMSE) to measure the
fidelity of the gains computed by the three methods relative
to the ground truth gain. The results are listed in Table II.
A smaller RMSE value indicates a better performance. The
Duo-SID correction method gives the best system gain among
the three methods.

3.A.2. Flat field image correction

Five flat field images acquired at 4 mAs with 53′′ SID were
used for the nonuniformity correction. We applied the system
gains obtained from the Duo-SID, linear interpolation, con-

ventional method, and exact calibration to the offset-corrected
flat field images. The RMSE of each corrected image against
its ground truth image was calculated. The RMSEs of all five
images were then averaged.

In addition to RMSE, we use the variation factor2 (VF) to
quantify the flatness of the corrected flat field images. We se-
lect a set of regions of 32 × 32 pixels uniformly distributed
across the image, and calculate the mean values from all re-
gions. The VF is the standard deviation over the average of all
mean values. A smaller VF indicates a better correction. The
results of RMSE and VF are listed in Table II. The Duo-SID
correction gives the best result and is the closest to the ground
truth gain correction.

Lastly, we compare column and row-directional 1D pro-
files of the corrected images along the lines intersecting at
the focal spot projection position: round{(cx, cy)/h} = (885,
757), obtained experimentally. The 1D profiles along the lines
with fixed row index = 757 and column index = 885 were
smoothed using an average filter with an 81 × 81 pixel win-
dow. The profiles are plotted in Fig. 6. The RMSE measure-
ments are given in Table II. The Duo-SID profiles are flatter
and show less variation than those from interpolation and con-
ventional methods.

3.A.3. Hand phantom image correction

Five hand phantom images acquired at 4 mAs with 53′′

SID were corrected using the three methods and exact gain
calibration. The RMSEs from the five images were averaged
for each method and listed in the last column of Table II.

FIG. 5. Extracted beam patterns at min/max SIDs and detector gain map.
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TABLE II. Quantification of the Duo-SID and alternative correction methods
at SID = 53′ ′.

Ĝ(53′′) Hand image
Correction of flat field image

Method RMSE RMSE VF 1Dx 1Dy RMSE

Exact . . . . . . 0.0004 . . . . . . . . .
Duo-SID 0.004 73.87 0.0043 16.78 62.46 74.05
Interpolation 0.012 241.24 0.0144 84.91 159.91 241.66
Conventional 0.020 350.65 0.0215 195.85 288.79 349.54

A comparison of the offset-only corrected and Duo-SID cor-
rected hand images is shown in Fig. 7. The latter shows ap-
pealing uniform background across the detector.

In all three evaluations, the Duo-SID correction method
demonstrates the best performance. It decreases the RMSEs
of corrected images by approximately 70% compared to in-
terpolation, and about 80% compared to the conventional
method.

3.B. Validation of separation algorithm

We tested the separation algorithm using simulated heel
effects and real detector gain. With the typical detector cali-
bration setup as in Fig. 3, we simulated the beam patterns at
SID = 43′′ and 63′′ using Eqs. (5) and (8). The x-ray source
was simplified to emit the Bremsstrahlung spectral beam with
a tungsten target and a tube peak voltage of 72 kV. Thus, ac-
cording to the Kramers formula, S0(E) = CZ(Emax − E) v0

c2 ,
where Emax = 72 keV, Z is the tungsten anode atomic num-
ber, Z = 74, v0 is the electron initial velocity, C is a material-
dependent constant, and c is the speed of light. Other sim-
ulation parameters are 12◦ anode angle and 21 mm Al added
filtration. The energy-dependent mass attenuation coefficients
of the aluminum and tungsten target are taken from Refs. 11
and 12. The cathode-anode axis is the x axis. The beam center
is (20, −30) pixels off the image center. The average electron
penetration depth da = 0.02 mm.

We simulated the min/max SID system gains by multiply-
ing the corresponding simulated beam patterns with the real
detector gain extracted in Sec. 3.A (see Fig. 5). The simulated

system gains are shown in Fig. 8. Finally, we applied the Duo-
SID separation algorithm to extract the beam inhomogeneity
fields and detector gain. The results are displayed in Fig. 9.
They match their ground-truth data visually. The correspond-
ing contour plots of the ground truth beam patterns are shown
earlier in Fig. 2. The RMSEs of the extracted beam nonuni-
formity at SID = 43′′ and 63′′, and extracted detector gain are
0.0116, 0.0116, and 0.0121, respectively. This test demon-
strates the efficacy of the separation algorithm with known
ground truth heel effect and detector gain data.

4. DISCUSSION

Several points need to be considered to facilitate practical
implementation of the proposed method. For optimal diag-
nostic imaging, the imager is set up and calibrated such that
the beam axis passes through the center of the image receptor.
This geometry condition, however, might be impractical to
maintain in use. Transverse and longitudinal alignment errors
could occur after SID resetting. The misalignment of the two
centers can be detected and monitored routinely by analyzing
flat field images acquired under the condition of lower kVp.
The peak and approximate circular symmetry of the beam ge-
ometric distortion in lower kVp flat field images serve as im-
age features for detection of the focal spot projection in the
imager. As long as the transverse misalignment between the
beam center and detector center is small, the method can au-
tomatically compensate for the misalignment. However, if the
misalignment exceeds some preset limit, the realignment or
system setup calibration should be performed manually.

In cases where the detector (such as a portable type) is
rotated 90◦, 180◦, or 270◦ from the calibration orientation,
system recalibration may be unnecessary. The existing cali-
bration files can be used through rotational alignment. The
rotation angle can be determined by exploiting the empiri-
cal, characteristic distributions of the heel pattern intensity
profiles.

We acknowledge that the tube kVp settings and receptor
nonlinearity can influence the calibration. The calibration is
valid, strictly speaking, for a fixed kVp setting and within the
linear sensitivity range of the detector. The anode heel effect

FIG. 6. 1D intensity profiles at y = 757 (left) and x = 885 (right) smoothed using an average filter with an 81 × 81 pixel window in the corrected flat field
image at SID = 53′ ′.
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FIG. 7. Offset corrected (left) and Duo-SID corrected (right) hand images at SID = 53′ ′.

FIG. 8. Simulated system gains at min-SID = 43′ ′ and max-SID = 63′ ′.

FIG. 9. Top: Simulated field inhomogeneity and detector gain extracted using the Duo-SID separation algorithm. Bottom: The corresponding ground truth data.
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increases with the increase of kVp, and the receptor responds
nonlinearly to high dose levels. If a calibration is made at a
very low kVp, the anode heel effects might be neglected. On
the other hand, if too high a dose is used, the calibration gain
would suffer from saturation effects. In either case, the cali-
bration would fail to correct images acquired under the most
commonly used clinical settings.

Lastly, we outline a scheme for generalizing our method
to address variable kVp and detector nonlinearity for general
radiography examinations, where the kVp may be set over a
wide range of 40–120 kV. During calibration, the kVp is set
at three potentials: 50, 70, and 90 kV. At each setting, the
detector system is calibrated using the Duo-SID method at
moderate, intermediately high, and high dose levels indepen-
dently, resulting in three sets of gain and basis heel pattern
files for each kVp setting. The tri-dose gains corresponding
to 70 kVp are fitted to a second-order polynomial gain as a
function of dose, representing the nonlinear gain. The three
min (or max) heel patterns corresponding to each kVp are av-
eraged. The three averaged min (or max) heel patterns are then
fitted to a second-order polynomial min (or max) heel pattern
as a function of kVp. During correction, a newly acquired im-
age (at certain acquisition kVp and SID) can be corrected us-
ing our method with the polynomial fitted gain and basis heel
patterns.

5. CONCLUSIONS

We have derived a Duo-SID correction method to enhance
the conventional offset/gain flat field correction for digital
x-ray imaging in a varying SID environment. This method di-
rectly analyzes system gains calibrated at the admissible min-
imum and maximum SIDs, resulting in an SID-invariant de-
tector gain. An optimal system gain is predicted at any SID by
combining the detector gain and heel effect obtained using the
projection imaging principles. The proposed method is char-
acterized by its purely computational nature in the sense that
it requires no physical filters or phantoms. Other advantages
include: (1) the procedure is relatively simple, and does not in-
volve any complicated models of the heel effect or model pa-
rameter tuning, (2) with relatively minor efforts the proposed
method can be incorporated into multiple-point gain calibra-
tion/correction techniques, and (3) compared to the empiri-
cal interpolation method that demands densely spaced SID
calibrations, our method is based on the optical projection
imaging. The Duo-SID gain calibration technique has demon-
strated promising performance. It offers a potentially valu-
able tool for preprocessing digital x-ray images for improved
mammography, chest and cardiac radiography, as well as au-
tomated computer aided diagnostic radiology.

APPENDIX A: MISMATCH SID RESIDUAL
INHOMOGENEITY

According to Eq. (1), the observed, uncorrected image ac-
quired at SID = d is related to its underlying correct image
Ic(i, j) by

I (i, j ) = G(i, j ; d) · Ic(i, j ) + N (i, j ).

If the gain is calibrated at the same SID, a perfectly corrected
image would result from Eq. (2), ignoring the random noise,

Ic(i, j ) = I (i, j ) − D̄(i, j )

G(i, j ; d)
. (A1)

On the other hand, if the gain calibration is made at a dif-
ferent SID = d′, an imperfectly corrected image would be
obtained,

I ′
c(i, j ) = I (i, j ) − D̄(i, j )

G(i, j ; d ′)
. (A2)

Taking the ratio of Eqs. (A2) and (A1), using Eq. (7) and ne-
glecting random scatter, we have

I ′
c(i, j ) = Ic(i, j )

G(i, j ; d)

G(i, j ; d ′)
= Ic(i, j )

g̃(i, j ; d)

g̃(i, j ; d ′)
.

The SID mismatch between calibration and correction causes
the corrected image residual heel effect inhomogeneity by a
factor of g̃(i, j ; d)/g̃(i, j ; d ′).

APPENDIX B: DERIVATION OF EQ. (12)

Consider a one dimensional signal f (x). It can be obtained
by interpolating among the samples { f (ih), i = . . . , −2, −1, 0,
1, 2, . . . } with sample period h. Using the Wittaker-Shannon
interpolation formula, an ideal reconstruction is given by

f (x) =
M∑

i=−N

f (ih) · sinc

(
x − ih

h

)
. (B1)

The formula is a convolution expressed as a weighted sum
of scaled instances of the reconstruction filter centered at the
sample points.

Let i = j − N. Equation (B1) can be written as

f (x) =
M+N∑
j=0

f (jh − Nh) · sinc

(
x − jh + Nh

h

)

=
M+N∑
j=0

f̃ (jh) · sinc

(
x − jh + Nh

h

)
, (B2)

where f̃ (jh) is expressed in the detector image domain.

Substituting x in (B2) with x/m yields

f
( x

m

)
=

M+N∑
j=0

f̃ (jh) · sinc

( x
m

− jh + Nh

h

)
. �

APPENDIX C: POSITION OF DETECTOR REGION IN
THE REFERENCE FRAME OF MAGNIFIED
DETECTOR AREA

The figure illustrates the geometrical relation of two ref-
erence frames. The small box inside shows the detector area.
The large box outside shows the magnified detector area. The
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beam center in the detector reference frame is at (cx, cy). The
beam center could be misaligned with the image center which
is at the center of the detector area by an offset.

After magnification about the beam axis by a factor m, the
detector becomes m2 larger in area. The new coordinates of
the beam center in the magnified detector reference frame are
(mcx, mcy). Thus, the coordinates of the upper left corner P of
the detector area are ((m − 1)cx, (m − 1)cy).
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